
e ,g ,mon 

0017-9310(95)00176-X 

Int, J. Heat Mass Transfer. Vol. 39, No. 4, pp. 691-705, 1996 
Copyright (C? 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0017-93 l 0/96 $15.00 + 0.00 

Analysis for the optimal performance of three- 
channel split-flow heat exchangers 

C. L. KO and G. L. WEDEKIND 
Oakland University, Rochester, MI 48309-4401, U.S.A. 

(Received l July 1994 and infinalform 16 May 1995) 

Abstract--Governing equations for describing the axial variation of temperature differences of fluids 
flowing in a three-channel single-pass heat exchanger are formulated by adopting similar assumptions 
as those used in the classical log-mean-temperature-difference (LMTD) method for two-channel heat 
exchangers. A special-case solution and a generalized solution of these governing differential equations 
are obtained for designing exchangers with split-flow channels in both parallel-flow and counterflow 
configurations. The special-case solution can be obtained under the condition of having identical axial- 
temperature distributions in the split-shell-flow channels and is similar to the classical formulation for two- 
channel heat exchangers, but with some parameter modifications. Solutions of this general model confirm 
that the special-case model represents the optimum design of such heat exchangers. These results are also 
verified experimentally using a concentric-tube heat exchanger. Theoretically predicted heat-exchanger 

effectivenesses are found on the average to be within _+ 5% of the experimental measurements. 

1. INTRODUCTION 

The primary functic,n of conventional heat exchangers 
is to transfer thermal energy from a hot fluid to a cold 
fluid. Although it i,; possible to have more than two 
flowing fluids present in a heat exchanger, three-chan- 
nel heat exchanger,; have not been popular because 
classical design methods such as the log-mean-tem- 
perature-difference (LMTD) method or the number- 
of-transfer-unit (NTU) method are only valid for two- 
channel heat exchangers. The primary advantage of 
having a third flow channel is to increase the heat 
transfer capability by transferring thermal energy in 
two opposite directions, either from a hot fluid flowing 
in the two side channels to a cold fluid flowing in the 
central channel, or vice versa. Also, the effectiveness 
of a three-channel heat exchanger can be significantly 
greater than that of a two-channel heat exchanger if 
one of the two flows in the two-channel heat exchanger 
is split into two side flows on each side of the central 
channel because it increases the convective heat trans- 
fer surface areas between the flowing fluids. 

Duvan [1] was granted a U.S. patent for inventing 
a three-channel single-pass split-flow heat exchanger. 
However, based on lhe authors' knowledge, methods 
for analyzing the heat transfer behaviour of heat 
exchangers of this type have never been reported in the 
open literature. Iqbal and Stachiewiez [2] presented a 
closed-form solution for heat transfer characteristics 
of mixed and split shell-flow heat exchangers in the 
cross-flow configuralion based on the NTU method ; 
however, their approach cannot be applied to three- 
channel exchangers because of the different nature 
of the problem they had solved. Three-channel heat 
exchangers basically consist of unmixed flows in three 

different channels where two different heat transfer 
paths in opposite directions are possible for each fluid. 
The governing equations for describing the heat-trans- 
fer behaviour of these heat exchangers are con- 
siderably different from those used in either the classi- 
cal LMTD method or the NTU method. Prasad [3] 
analyzed the heat transfer problem of a two-channel 
double-pipe heat exchanger with a non-adiabatic con- 
dition at the outer surface. Although his governing 
equations are similar in form to those for a three- 
channel heat exchanger, they cannot be applied 
directly to three-channel heat exchangers because only 
two-flowing fluids were considered in his analysis, and 
the ambient fluid temperature at the outer surface was 
assumed to be constant. In view of the need to fully 
understand the heat transfer behaviour of three-chan- 
nel heat exchangers, the primary objective of this work 
is to develop an analytical technique for designing this 
type of exchangers such that an optimal heat transfer 
capability can be achieved. 

To derive the governing equations for the problem, 
similar assumptions as those used in the classical 
LMTD or NTU method are adopted in the present 
analysis. As was characterized by Taborek [4], the 
classical LMTD and NTU methods only deal with 
the thermodynamic part of the problem because they 
assume the overall heat-transfer coefficient is both 
known and constant. The same drawback also applies 
to the present analysis because similar assumptions 
are used to solve the problem for three-channel heat 
exchangers. Although the classical LMTD and NTU 
methods are not perfect, no other method has been 
formulated to replace their roles in heat exchanger 
design and analysis to this date. Therefore, the present 
method can also have the same importance to the 
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NOMENCLATURE 

A undetermined coefficient in (39) or 
total heat exchange area in (A2) 

AI~ heat transfer area between channels 
no. 1 and no. i (i = 2,3) 

a non-dimensional parameters defined 
in (10), (12), (13), (34) and (63) 

B undetermined coefficient in (39) 
b non-dimensional parameters defined 

in (34), (35), (56) and (57) 
C flow capacity rates defined in (7), (17) 

and (A1) 
cpj specific heat of the fluid in channel 

no. i 
Di coefficients in (B4) and (B9) (i = 1,2,3) 
L total length of the exchanger 
m~ mass flow rate of the flow in channel 

no. i 
Ntu equivalent numbers of transfer units 

defined in (20) and (67) 
Pu heat transfer perimeter between 

channels no. 1 and no. i (i = 2,3) 
Q total heat transfer rate of the 

exchanger 
Q,  heat transfer rate between flows in 

channels no. 1 and no. i (i = 2,3) 
s equivalent split-flow temperature 
si parameters defined in (11) (i = 1,2) 
T~ fluid temperature in channel no. i 

(i = 1,2,3) 
T~ equivalent split-shell-flow temperature 
U overall heat transfer coefficient 
Uli overall heat transfer coefficient 

between channels no.1 and no. i(i = 2,3) 
u temperature difference defined in (10) 
v temperature difference defined in (10) 
x axial coordinate of a point in the 

exchanger 

normalized axial coordinate defined in 
(10). 

Greek symbols 
non-dimensional parameter defined in 
(39) 

fl non-dimensional parameter defined in 
(39) 

7 non-dimensional parameter defined in 
(40) 

e heat exchanger effectiveness defined in 
(19) 

2 flow capacity ratio defined in (16) 
# flow capacity ratio defined in (21) 
v parameter defined in (B8) 
0 non-dimensional parameter defined in 

(63) 
q~ non-dimensional parameter defined in 

(63) 
cr temperature difference defined in (C8) 
z temperature difference defined in (C5) 
A temperature difference defined in (C5) 
~0 temperature difference defined in 

(C14) 
q temperature difference defined in 

(El4). 

Subscript 
A 
C 

e 

h 
i 
L 
O 

S 

temperature difference at x = 0 
properties of the cold fluid 
equivalent values 
properties of the hot fluid 
temperature at the inlet 
temperature difference at x = L 
temperature at the outlet 
equivalent properties of the split flow. 

optimum design of three-channel heat exchangers as 
that of the classical methods to the design of the tra- 
ditional two-channel heat exchangers. 

Two mathematical approaches similar to those for 
the classical LMTD and the NTU methods are under- 
taken in the present analysis : one is to formulate the 
problem into ordinary differential equations such that 
outlet temperatures can be determined directly from 
their exact solutions ; the other is to utilize these solu- 
tions to develop relationships between the heat 
exchanger effectiveness and an equivalent number of 
transfer units. The former case can be applied to any 
general three-channel heat exchangers; however, the 
latter technique is feasible only for split-shell-flow 
exchangers. Although the exact solutions of the gov- 
erning differential equations for a generalized heat 
exchanger can be obtained, a special-case condition 

of having identical axial-temperature distributions in 
the split-shell-flow channels will also be investigated. 
Under such a condition, the governing equations 
become similar in form to those for two-channel heat 
exchangers and their solution can be formulated into 
the classical solution with some parameter modi- 
fications. Consequently, heat transfer characteristics 
calculated by using the special-case solution can be 
compared to those determined by solving the gov- 
erning differential equations for the general case to 
examine the performance of this type of heat 
exchanger. As it turns out, this special case solution 
represents the optimum flow configuration for achiev- 
ing maximum heat exchanger effectiveness. 

To verify the predictive capability of the general- 
case theory, experimental measurements for various 
flow configurations for a three-channel split-flow 
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Fig. 1. Schematic of a three-channel single-pass split-flow 
heat exchanger. 

single-pass concentric-tube heat exchanger were 
also obtained. Fluid flows in these exchangers were 
maintained steady and laminar. The choice of having 
steady laminar :flows in concentric-tube heat 
exchangers is primarily based on the availability of 
accurate empirical correlations for calculating con- 
vective heat transfer coefficients for this type of flows. 
Similar to the classical LMTD or NTU method, the 
accuracy of the present techniques depends greatly 
upon the accuracy of estimating convective heat 
transfer coefficients. Kays [5] presented correlations of 
Nusselt numbers for laminar flows in a concentric-tube 
annulus. Although the correlations presented are only 
for specific values of radius ratios, these data are far 
more complete than what appears to exist in any other 
available literature. Therefore, Kays' [5] correlations 
are used to determine convective heat-transfer 
coefficients for the present theoretical computations. 
Values of the convective heat transfer coefficients for 
annular flows with radius ratios different from those 
specific radius ratios given by Kays [5] are obtained 
by using the method of graphical interpolation. 

2. FORMULATION OF THE THEORETICAL 
MODEL 

Although the analysis could be applied to any gen- 
eral three-channeMlow configuration, for the pur- 
poses of this paper because of its practicality, the 
problem under consideration is the determination of 
the heat transfer cha:racteristics of three-channel single- 
pass split-flow heat exchangers as shown schemat- 
ically in Fig. 1. The shell fluid is split to flow in 
the two side channeiLs (channels no. 2 and no. 3) and 
the unsplit tube fluid flows in the central channel 
(channel no. 1), which is also a reference channel. If 
the split flows in the two side channels are in the same 
direction as the unsplit central flow in the reference 
channel, as shown in Fig. 1, the configuration will be 
considered parallel-flow. If the split flows are in the 
opposite direction of the central-channel reference 
flow, the exchanger will be considered counterflow. 
The geometry of channel cross-sections can either be 
annular, circular, rectangular, or of any arbitrary 
shape, as long as a common boundary exists between 
two adjacent channels. 

2.1. Dif ferent ial  equations 9overnin 9 the axial  tem- 
perature distribution 

The mass flow rates and specific heats of fluids in 
channels numbered l, 2 and 3 as shown in Fig. 1 are 
denoted as m~, m2, m~, and cpl, %2, Cp3, respectively. 
Temperatures of the flowing fluids in these channels 
are also designated as T~, T2 and T3, respectively. 
Accordingly, the inlet and the outlet temperatures of 
these fluid flows are denoted as T~, T2~, T3i and T~o, T2o, 
7"3o. The total length of the exchanger is designated as 
L and the axial coordinate of any point in the heat 
exchanger is denoted as x, with x = 0 being located at 
the inlet of the central channel, channel no. 1. The 
overall heat transfer coefficient for the transverse heat 
transfer rate between fluids in channel no. 1 and chan- 
nel no. 2, Q~2, is specified as U~2 and that for the 
transverse heat transfer between fluids in channel no. 
1 and channel no. 3, Q~3, is denoted as Uja. These 
coefficients are based upon reference surface areas, 
A~2 and A I3 , which can be represented by the mul- 
tiplication of their corresponding reference 
perimeters, Pt2 and PI3 ,  with the heat exchanger 
length, L. As a reference for the flow directions, the 
flow in channel 1 will always be in the positive x- 
direction. Assumptions used in the classical LMTD 
method [6] are adopted in the present analysis to 
derive the governing equation for describing the heat 
transfer behaviour of these heat exchangers. 

The differential equation governing the axial tem- 
perature distribution for the fluid in a specific channel 
can be formulated by applying the steady-state form 
of the conservation of energy principle to an arbitrary 
control volume with length Ax, located between x 
and x + Ax. Axial conduction in the fluids and in the 
channel walls is considered negligible. Neglecting any 
change in kinetic as well as potential energies, and 
assuming that the heat transfer only takes place 
between the two fluids in the three channels, one can 
obtain an expression indicating the rate of enthalpy 
change of the fluid flowing through the control volume 
being equal to its rate of heat transfer. Thus, for the 
fluid flow in channel no. 1, the conservation of energy 
principle yields 

mj Cpl [T1 (x+ Ax) - Tj (x)]  

I~ 
+Ax 

= -- U 1 2 P j 2 ( T 1 -  T2) dx 

i 
x + A x  

-- U , 3 P , 3 ( T , - T 3 ) d x .  (1) 
x 

Flow no. 1 exchanges heat with the fluids in both 
channels no. 2 and no. 3. Equation (1) is a general 
expression and can be applied to any cases with heat 
transfer being either from fluid no. 1 to fluids no. 2 
and no. 3, or vice versa, because of its sign consistency. 

Similar expressions for the split flows in channels 
no. 2 and no. 3 can be obtained as follows by recog- 
nizing that each of them exchanges heat only with 
fluid no. 1 : 
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m2Cpz[Tz(x  + A x  ) --  T2 (x)] 

+ fx+t~x 
= _ U 1 2 P , z ( T , - T 2 ) d x  (2) 

dx 

m 3 Cp3 [ T3 (x + Ax) -- T3 (x) ] 

I~ 
+Ax 

= + U l 3 P , ~ ( r ~ - T 3 ) d x .  (3) 

As was mentioned earlier, if the flow direction of the 
split flows in channels no. 2 and no. 3 is the same 
as that of flow no. 1 (the positive x-direction), the 
exchanger has a parallel-flow configuration, and the 
signs on the right-hand side of equations (2) and (3) 
are positive. If the flow direction of fluids no. 2 and 
no. 3 is opposite to that of fluid no. 1 (the negative x- 
direction), the arrangement is referred to as a coun- 
terftow configuration, and the negative signs should 
be chosen for the right-hand side of equations (2) and 
(3). 

Each of the above equations can be converted into 
a differential equation by dividing them by the length 
of the control volume, Ax, and then taking the limit as 
Ax approaches zero. The resulting coupled differential 
equations for each of the respective flow channels are 
expressed as follows : 

(i) Channel 1 

dTl  UIzPI2 U13PI3 
- -  (T1 - T 2 )  

d x  C 1 C |  
( T I - T 3 )  

(4) 

(ii) Channel  2 

dT2 U12P12 (T 1 _ T2) (5) 
dx - 4- C2 

(iii) Channel  3 

dT3 = -~ Ul3e l3  ( r ,  - r3) (6) 
dx - C3 

where the flow capacity rate, C = m Cp, for each of the 
flow channels is given respectively by 

C 1 ~ mlcp! C 2 ~-- m2cp2 C 3 ~-~ m3ep3. (7) 

Combining equations (4)-(6), one can obtain 

du 
+ a l u + a 2 v  = 0 (8) 

dv 
dzz + a 4 v + a 3 u  = 0. (9) 

Parameters in these equations are defined as follows : 

u - T,  - T2 v ~ T~ - T3 

z -  x / L  a2 -~ (UI3P13L)/C1 

and a 3 ~ (U~zP~2L)/C~. (10) 

Ratios of the flow capacity rates can also be defined 
as 

S 1 -~ C I / C  2 and s2 =- CI /C3.  (11) 

Thus, the coefficients a, and a4 can be expressed in 
terms of a2 and a3 for each different flow configuration 
as 

(i) Parallel flows 

a l = - a 3 ( l + S l )  and a4==-a2(l+s2) (12) 

(ii) Counterftows 

al --- a3 (1 -S l )  and a4 - a2(1-s2) .  (13) 

For a three-channel single-pass split-flow heat 
exchanger, it is possible to express the total heat trans- 
fer rate and the effectiveness of the exchanger in a 
manner  similar to those of a standard two-channel 
heat exchanger. Treating the flows in channel 2 and 
channel 3 as the split shell flows, one can express the 
total heat exchanger heat transfer rate, Q, in terms of 
an equivalent shell-flow temperature, Ts, as 

f0 Q. = UePeL (T ,  - Ts) dz. (14) 

The equivalent heat transfer coefficient, U~, is based 
on an equivalent perimeter, Pe. The equivalent shell- 
flow temperature can be related to temperatures of 
the fluids in the two split-flow side channels as 

T~ = 2T2 + (1 -2 )T3  (15) 

where the parameter, 2, is defined as 

Cz 
Z = (16) 

Cs" 

The total flow capacity rate of the split shell flow is 
defined as 

C~ --- C2 + C3. (17) 

Utilizing the right-hand side of equation (1), and 
the parameters defined in equation (10), one can 
express the total heat transfer rate as 

f0 Q = U12PlzL  u d z  + U 1 3 P u L  vdz .  (18) 

The effectiveness of the heat exchanger, 5, can be 
defined in the same manner  as that of a two-channel 
heat exchanger as 

8 ~ Cmin(Tli__Tsi ) . (19) 

The minimum flow capacity ratio, Cmin, is either C, or 
Cs, whichever has the smaller value. Since fluids no. 2 
and no. 3 are the two branches of the split shell flow, 
their inlet temperatures are assumed to be the same, 
and therefore, are equal to the inlet temperature of 
the equivalent shell flow, T~i. One can also define an 
equivalent number  of heat transfer units in the same 
way as that of a two-channel heat exchanger to be 

U~PeL 
N t u  = (20) 

Groin 
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To derive the relationship between the effectiveness 
and the number  of transfer units, one can define the 
flow capacity ratio as/~ = Cmm/Cr, ax. Hence, this par- 
ameter can be evahmted as 

C~ C~ 
/~=~--~ if Ca ~< Cs and /~=~-~( if Ca ~> C~. 

(21) 

2.2. Special-case model  
Consider the special-case situation where 

U I 2 P a 2  U 1 3 P I 3  
(22) 

C2 C3 

If fluid no. 2 and fluid no. 3 have the same flow 
direction and the same inlet temperature, then it is 
clear from equations (5) and (6) that T2 = T3 for 
all values of x. Therefore, u = v, and consequently, 
equations (8) and (9) become 

du dv 
d~ + (aa +a2)u  = dzz + (a3 +a4)v = 0 .  (23) 

Both equations (22) and (23) demand that 

(aa +a2)  = (a3 +a4) .  (24) 

It is noted that the form of equation (23) is identical 
to that for the classical two-channel heat exchanger. 
Therefore, the classical L M T D  and N T U  approaches 
can be applied to the problem with slight modi- 
fications. 

The solution of equation (23) for the case 
al +a2 # 0 can be determined as 

u = v = UA e -~''+~)~ (25) 

where UA = VA are the temperature differences, u and 
v, evaluated at x = 0. Temperature differences at 
x = L can also be expressed as 

U L = V L = U A e -(°, +~). (26) 

The outlet temperatures of the flowing fluids can be 
determined by evaluating UA for each configuration. 
For  a split-flow heat exchanger, its heat transfer effec- 
tiveness can also be formulated in terms of the equi- 
valent number  of transfer units as well as the heat 
capacity ratio between the flow in the central channel 
and the combined split flow in the other two channels. 
These effectiveness-Ntu relationships for parallel-flow 
and counterflow configurations can be derived by uti- 
lizing the above general solution, the special-condition 
expressions of equations (18)-(22), and the following 
equation obtained h,r the special-case condition : 

U~P~ = U I 2 P a 2  "~ U l 3 P a 3 .  (27) 

Summarized below are the expressions derived for 
determining the oul:let temperatures and the heat- 
exchanger effectiveness for these two possible con- 
figurations. 

(1) Parallel-flow configuration. Outlet temperatures 
of the flowing fluids can be determined as 

T,o = Tl~-- (a-~2-+a3)(Tli-- T2i) [1--e -("2+a3+'3s,)] (28) 
(a 2 -k-a 3 +a3s1) 

7"2o ---- T3o =- T l o - ( Z l i - Z 2 i ) e  -(a2+a3+a3sO. (29) 

The equivalent number  of transfer units and the 
heat-exchanger effectiveness can also be derived to be 

(a~ + a 0  
Ntu  = - -  (30) 

(1 +/~) 

1 
8 = ~ [l --e -(l +u)Ntu I. (31) 

(2) Counterflow configuration. The temperature 
differences at x = 0 and x = L can be expressed as 

UA = VA = T i t -  T2o = T l i -  T3o (32) 

UL = VL = Tlo -- T2i = 7"1o -- T3i. (33) 

Outlet temperatures can then be determined to be 

b 9 b l o - b s b l l  
Tao - (34) 

bl2 

hal - b  9 
Tzo = T3o (35) 

bx2 

where 

Tai 
bs = a s ( b a o - 1 )  b9 = - - ( a s b a o - a 3 s a )  

a6 a6 

b a 0 - - e  -a6 baa ==-T2i-l-baoTai 

ha2 ~ h i 0 - b 8  a5 ==- a2 +a3 a6 =- a 5 - a 3 s 1 .  

The equivalent number  of transfer units can also be 
determined as 

N t u  = (aa + a2) for/~ -- Ct (1 - p ~  ~ < 1 (36a) 

(al +a2)  Cs 
Ntu  - ( p _  1) for/~ - ~ -  < 1 (36b) 

a2 Cj 
N t u  = (1-2~-) for#  = Css = 1. (36c) 

The effectiveness of the heat exchanger can be 
derived to be 

l - e O~- i )Ntu 
e for/~ < 1 (37a) 

1 - I~ e ~"- 1 )Ntu 

N tu  
1 + N t u  for#  = l. (37b) 

Equation (37b) is obtained from equation (37a) by 
using L'Hospital 's  rule. 

It is significant that this special-case model, where 
the split-flow distribution satisfies the condition 
shown in equation (22), can be shown to represent the 
case of having the maximum effectiveness for a three- 
channel, split-flow heat exchanger. However, veri- 
fication of this phenomenon requires comparing the 
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numerical results obtained for this case to those 
obtained for the general case. 

2.3. Generalized model 
Equations (4) and (5) can be combined into the 

following second-order differential equation by eli- 
minating the dependent variable v : 

d2u + (al du 
+ a 4 ) ~ z  z + ( a l a 4 - a z a 3 ) u = 0 .  (38) 

dz ~ 

The general solution of equation (38) for the case 
a~a4 =fi aza3 can be expressed as 

u = e -  = (A sinh flz + B cosh flz) (39a) 

where ~ - (a, +a4)/2 and fl -- ~/([(a, -a4)Z/4] 
q-a2a3). For a three-channel heat exchanger, both s~ 
and s2 cannot be zero. Hence, the situation of 
ata4 = a2a3 can only exist for exchangers in the coun- 
terflow configuration. Under  this special situation, the 
general solution becomes 

u = A + Be 2~. (39b) 

Undetermined constants, A and B, can be evaluated 
by using end conditions at inlets and outlets. The 
general solution of the dependent variable v can also 
be obtained as follows by substituting equation (39a) 
or equation (39b) into equation (8) : 

v = - -  [(AT-Bfl) sinh/~z+ (BT--A/3) cosh/~z] 
a2 

for ala 4 # a2a3 (40a) 

for ala4 = aea3 (40b) 
1 

V = - -  (Ba4 e -2~: -Aa l )  
a2 

where 7 = (a4-aO/2. 
Boundary conditions in general can be expressed as 

Atz=O:U=UA and V=VA (41) 

A t z = I : U = U L  and V=VL. (42) 

Parameters UA, VA, UL, and v L depend upon the flow 
configuration of the heat exchanger. In general, these 
parameters are functions of inlet and outlet tem- 
peratures and consequently, they can also be unde- 
termined variables. In any case, temperature differ- 
ences UA and VA can either be evaluated from inlet 
temperatures directly or be determined by-man- 
ipulating equations (39) and (40) to satisfy inlet 
boundary conditions. Therefore, the general solution 
of temperature differences for the case a la4 7 ~ a2a3 can 
be expressed in terms of UA and vA as 

r 1 --a2vA)sinh~z I (43) = e -  ~- [_UA cosh/3z + (?UA u 

V =  e--=IVA cosh flz -I  sinh Bz]. (a3 UA + ?VA) (44) 

For the case a,a4 = a2a3, the general solution becomes 

1 
U =~[(a4uA--a2vA)+(alUa-I-a2vA)e -2~'] (45) 

1 
v=~[(alvA_a3uA)+(a3Uaq_a4vA) e 2~z]. (46) 

Temperature differences at x = L for the case 
ala4 # a~a3 can then be determined as 

1 
u L = e  ~[UA COSh~+-~(?uA--a2vA) smh[3] (47) 

vL = e-~IVA cosh3-- ~(a3uA + ?VA) sinh31. (48) 

Those for the case a~a4 = aza3 can also be expressed 
as 

1 
uL = ~[(a4Ua--a2Va)+(aluA+a2vA) e -2~] (49) 

1 
vL = ~[(alVa--a3uA)+(a3ua+a4vA)e-2~]. (50) 

Outlet temperatures of fluid flows in all three channels 
can be determined by evaluating temperature differ- 
ences at x = 0 using inlet temperatures of fluid flows 
in all three channels, T~, T~2, and T~ 3. Results for the 
parallel-flow and the counterflow configurations are 
summarized below. 

(1) Parallel flow configuration (a~a4 ~ aza3 
always) : 

Temperature differences at x = 0 can be determined 
as 

U A "~ T l i -  T2i (51) 

VA ---- T l i -  T3i. (52) 

Outlet temperatures of the flowing fluids can then 
be shown to be 

CI Tli -t- C2 (g/L q- T2i) + C3 (vL -I- T3i) 
Tro -- (53) 

C1 + C 2 + C 3  

T2o = Tlo -- UL (54) 

Z3o = TIo--VL. (55) 

Temperature differences at x = L can be evaluated 
by using equations (47) and (48). 

(2) Counterflow configuration : 
Temperature differences at x = 0 can be determined 

by utilizing equations (47)-(50) to be 

1 
uA = ~ (b4b6 -b3bT) (56) 

VA = 12 (bzb7 -b4bs)  (57) 

where for the case a~a4 # aza3, 

bt ~ b266-b3b5 

1 
b2 = cosh/~+ ~(a3 +7) sinh// 

P 
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1 
b3 = ~ (y - a2 )  sinh f l - cosh  fl 

b4 = e=(T3i-- Tzi) 

b5--- 1 - e-= (cosh fl + ~ sinh fl) 

b 6 - = ~ e -  =sinhfl+ 1 
$2 

b 7 ~ - 1  ( T , i  - T2i ) @ - -  (T,~ - T 3 0 .  
& 

For the case a~a4 = a2a3, parameters be-b7 should be 
evaluated as 

b2 - a3q-a4--Yla3e 2. 

b3 = s2a 2 e - 2 ~  - - a l  --a2 

ba ~- 2o~(T3i- "]r'2i) 

2~ 
b5 - a 4  - -  - -  - ] - a l e  - c a  

s l  

2~ 
b 6 ~ - a  2 - -  + a  2 e  2~ 

$2 

Outlet temperatures of the flowing fluids in three 
different channels can then be determined as 

1 
T,o = Tli + I  (T2i+UA-- Tn)+--(T3i+VA-- T,i) 

SI S2 

(58) 

(59) 

(60) 

T 2 o  ~ r l i  - -  UA 

T3o ----- T l i - - V  A . 

The total heat transfer rate of the heat exchanger, Q, 
can be determined from outlet temperatures as 

Q. = CI(T~- T~o) = C2(T:o- T:i)+C3(T3o-- T30. 

(61) 

For a split-flow exchanger in the counterflow 
arrangement, the solution cannot be obtained by using 
the above analysis if the heat capacity ratio is exactly 
equal to unity (/~ = 1 and CI = Cs). The expressions 
of temperature differences shown in equations (45) 
and (46) become trivial because UA = VA = 0 under 
this circumstance. A similar situation also happens 
to the classical LMTD solution for a two-channel 
counterflow exchanger when its heat capacity ratio is 
exactly equal to unity. This can be seen by examining 
the closed-form LMTD temperature relationships 
shown in Appendix A for conventional two-channel 
heat exchangers. The; log mean temperature difference 
becomes meaningless and undeterminable under this 
circumstance. Therefore, the total heat transfer rate 
and outlet temperatures for this particular case can 

only be obtained by reformulating the governing 
equation for this special condition as shown in Appen- 
dix A or applying L'Hospital's rule to the general 
expression of the heat exchanger effectiveness for 
counterflow exchangers [see equation (37b)]. The 
technique of applying L'Hospital's rule to the similar 
case for a split-flow exchanger is infeasible because 
the nature of the formulation is different from that of a 
conventional two-channel heat exchanger. Therefore, 
the solution to the problem can only be obtained by 
reformulating the governing equations to satisfy this 
special-case condition. This theoretical analysis for 
three-channel split-flow heat exchangers with the 
counterflow configuration under the special condition 
of having the value of the flow capacity ratio being 
precisely equal to unity is presented in Appendix B. 

As is shown in Appendix C, the number of transfer 
units of a split-shell-flow heat exchanger under a gen- 
eralized condition can be expressed in terms of the 
solution of the governing equation of a three-channel 
heat exchanger as 

= ( (]1 ~[  a30+a2d~ 1 ( 6 2 )  
Ntu \Cmi, j L).0 + (1 _ 2)~b_] 

where 

O - f l  udz and 4~ ==- fl  vdz. 

Utilizing equations (43) and (44) to evaluate the 
above integrations, one can express the undetermined 
parameters, 0 and ~b, for the case a~a4 ~ a2a3 as 

o=.b(l (, . o  +~)[+~-{ .aT+as)  (63) 

dp=vAIaT(l+~)+as(;--1)l+~5~-(aT+as) (64) 

where 

and 

1 
a7 = 2(a+fl) [1 - e  -(~+~)] 

1 
- -  [ 1 - e  ta ~)]. a8 - 2 ( / 3 - a )  

For the case a~a 4 = a2a3, these parameters become 

O=l[a4uA--a2vA+l(a~uA+a2vA)(1--e-2~')l 

(65) 

1 
1 [ a l v A - - a 3 u A + ~ ( a 3 u A + a 4 v a ) ( l - - e - 2 ~ ) ]  

(66) 

Based on the definition of the equivalent number of 
transfer units shown in equation (20), it can also be 
expressed as 
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where 

Ntu~ =- 

NtulO+ Ntu2~ 
Ntu = (67) ~o+(1-~)~ 

U12Pt2L UI3P13L 
and Ntu2 - 

Cmin Cmin 

These numbers of transfer units corresponding to par- 
tial heat transfer rates can be determined as 

C~ 
If t t = ~ <  1: Ntul =a3 and Ntu2 =a2 (68) 

Cs a3 a2 
If # = ~ - ~ <  1: Ntul =--/t and N t u 2 -  l J (69) 

As is shown in Appendix C, the relationship 
between the effectiveness and the equivalent number 
of transfer units for a three-channel single-pass split- 
flow heat exchanger in either the parallel-flow or the 
counterflow configuration can be derived to be in the 
same form as that of a classical two-channel heat 
exchanger [6, 7]. Therefore, using equations (21) and 
(67) to compute/~ and Ntu, respectively, one can deter- 
mine the heat-exchanger effectiveness by using an 
appropriate equation as those shown in equations (31) 
and (37) for the special-case model. However, for a 
counterflow three-channel split-flow heat exchanger 
having a heat capacity ratio being equal to unity, the 
value of the number of transfer units determined by 
using equation (67) becomes singular. As is shown in 
Appendix B, the proper Ntu value under this cir- 
cumstance should be obtained from equation (B23) 
instead. 

3. THEORETICAL RESULTS AND EXPERIMENTAL 
VERIFICATION 

To verify the present theory, heat transfer charac- 
teristics of a three-channel split-flow single-pass con- 
centric-tube heat exchanger are experimentally mea- 
sured and compared with those calculated 
theoretically. A schematic of the three-channel split- 
flow heat exchanger and the associated instru- 
mentation used for the experimental measurements is 
shown in Fig. 2. It is constructed by assembling three 
concentric copper tubes and an inner solid copper 
wire. Figure 3 depicts a cross:section of the three- 
channel concentric-tube heat exchanger. The outer 
diameters of the inner, the central and the outer tubes 
are 6.35, 9.53 and 12.7 ram, respectively. The wall 
thickness of these three tubes are 0.762, 0.762 and 
0.889 mm, respectively. The diameter of the inner solid 
wire is 1.59 mm and the length of the heat exchanger 
is 1.22 m. (The lengths of the end fittings are small 
compared to the overall length, L, of the heat 
exchanger.) Both parallel-flow and counterflow con- 
figurations were tested by using the same heat 
exchanger. The central annulus is designated as chan- 
nel 1 in which the unsplit fluid flows. The split-flow 
fluid flows in both the outer and the inner annular 

channels, which are designated as channel 2 and chan- 
nel 3, respectively. The split-flow fluid in these chan- 
nels have the same inlet temperatures. Water was the 
fluid used for all three channels. Volumetric flowrates 
for each channel were measured by using three sep- 
arate variable area flowmeters. Inlet and outlet fluid 
temperatures were measured using thermocouples and 
a multiple-channel strip-chart temperature recorder. 
Flowrates in all three channels were kept within the 
range of laminar flows to avoid transition. An effort 
was made to minimize entrance effects by having the 
water enter all three channels from a polyvinyl chlor- 
ide tubing of about the same size as that of the heat 
exchanger channel. 

Tables 1 and 2 summarize the comparison of exper- 
imental results to the theoretical predictions cal- 
culated by using the generalized model for parallel- 
flow and counterflow configurations, respectively. 
Two different values of the heat exchanger effec- 
tiveness are calculated from the experimental 
measurements: the effectiveness calculated from the 
heat transfer rate in the central unsplit annular-tube- 
flow channel, e, ; and the effectiveness calculated from 
the heat transfer rates in the inner and the outer split- 
flow channels, es. Theoretical results are obtained by 
utilizing the correlations of Nusseh numbers and 
influence coefficients for fully-developed laminar 
annular flows reported by Kays [5]. Since these cor- 
relations were only available for a limited number of 
values of radius ratios, graphical interpolation was 
used to estimate actual values of Nusselt numbers 
and influence coefficients. In general, results shown in 
Tables 1 and 2 indicate that theoretical predictions 
are on the average within + 5% of the experimental 
measurements. Results for the case of having no-flow 
in one of the split-flow channels are also included. 
Due to computational procedures, the present theory 
will become invalid if one of the three channels has a 
zero flowrate, therefore, theoretical results for these 
no-flow cases are obtained by using a relatively small 
flowrate in this no-flow channel. Discrepancies for 
these cases between the theoretical results and exper- 
imental measurements are approximately on the order 
of + 18%. Values of Reynolds numbers and heat 
capacity ratios used for theoretical calculations of 
these cases are included in parentheses. Except for the 
case of 2 = 0, the theoretical data shown agree within 
+5% with the experimental measurements. Since 
Reynolds numbers of the flow in the inner annulus 
(channel no. 3) are relatively large for cases with 
2 = 0, the laminar-flow correlations of Nusselt num- 
bers might not be accurate, or the fluid in the channel 
might be experiencing some degree of turbulence. 
Consequently, for 2 = 0, the values of the effectiveness 
predicted by using the present theoretical model are 
lower than experimental measurements for both the 
parallel-flow and the counterflow configurations. 

An important observation can be made about the 
heat exchanger effectiveness, e, from both the exper- 
imental and the theoretical data, and for both con- 
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T 

T Ch#2 
Ch#3 -----[ 

I 

~-- Ch#1 

HWS 

cws 

cwsl 

T 

Heat Exchanger Ch#2 _~----~ Ch#3 

= Variable Area Flowmeter 
T = Thermoeouple Probe 
@ = Flow Control Valve 
D = Drain 
HWS = Hot Water Supply 
CWS = Cold Water Supply 

T 1 

Fig. 2. Schematic of the experimental apparatus associated with testing the three-channel split-flow con- 
centric-tube heat exchanger; counterflow configuration (for parallel flow, flowmeter at channel no. 1 left 

is moved to channel no. 1 right). 

Fig. 3. Cross-section of a three-channel split-flow concentric- 
tube heat exchanger. 

figurations, although it is more pronounced for the 
counterflow results. The observation is that heat 
exchanger effectiw~ness is lower for 2 = 0 or 2 = 1 
(no-flow in channel 2 or channel 3, respectively), than 
it is for values of 2 in between. This suggests that there 
is some optimal split-flow distribution parameter, 2, 
where the heat exchanger effectiveness is a maximum. 
This will be developed in the next section. 

4. VERIFICATION THAT THE SPECIAL-CASE 
MODEL REPRESENTS THE OPTIMUM DESIGN 

The focus of this paper is to establish the fact that 
the flow distribution of the split flow is an important 

parameter in determining the overall performance of 
a three-channel single-pass split-flow heat exchanger. 
In fact, as suggested by the data presented in the 
previous section, there is an optimal split-flow dis- 
tribution, 2, which will maximize the heat-exchanger 
effectiveness. Furthermore, this optimal split-flow dis- 
tribution will be shown to be the same as that specified 
by the special-case model presented earlier. This will 
be done by utilizing the generalized model to deter- 
mine the heat exchanger effectiveness, ~, as a function 
of the split-flow distribution parameter, 2, for several 
different flow capacity ratios, Cl/Cs. 

The geometry and dimensions of the heat exchanger 
analyzed are identical to those of the experimental 
apparatus discussed previously. The volumetric flow 
rate of the non-split central annular flow is assumed 
to be 0.613 1 h -1, while those of the split-shell flows 
are varied to yield the desired values of 2 and C I / C  s 

under the laminar-flow regime. Inlet temperatures of 
the two split flows and the central annular flow are 
12.2, 12.2 and 47.8°C, respectively. Data cor- 
responding to cases which have either turbulent or 
transitional flow in one of the three channels are 
excluded so a proper comparison can be made. Fig- 
ures 4 and 5 correlate the predicted values of the heat 
exchanger effectiveness with the heat capacity ratios 
of the split-flow exchanger, 2 and C~/Cs, for parallel- 
flow and counterflow configurations, respectively. The 
results for the case of CI/Cs = 1 shown in Fig. 5 are 
calculated by using equations derived in Appendix B 
for counterflow heat exchangers. All of the curves 
shown in Figs. 4 and 5 demonstrate the existence of a 
maximum value of the effectiveness at a given value 
of split-flow distribution parameter, 2, for each flow 
capacity ratio, C~/Cs. Values of the heat-exchanger 
effectiveness predicted, using the special-case model 
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- -  Theoretical Model 
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Fig. 4. Influence of split-flow distribution on performance of a three-channel parallel-flow heat exchanger. 

0.8 

¢, 0.6 
e l  
>. 

",~1 
r p 

~i 0,4 

0.2 

C d ~ d C  s ~ 1.5 

o . -__ . ._ . ._  

o Special-Case Model 

- -  Theoretical Model 

0 I I I I I 

0 0.2 0.4 0.6 0.8 1 
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Fig. 5. Influence of split-fow distribution on performance of a three-channel counterflow heat exchanger. 

shown in equations (31) and (37), which is valid for 
the special case conditions specified by equation (22), 
are also depicted i:a Figs. 4 and 5. It is clear from the 
data that the special-case model represents the optimal 
design for the tkree-channel heat exchanger effec- 
tiveness. Using equations (16), (17) and (22), one can 
derive the optimal value of the split-flow distribution 
parameter, 2op, to 19e 

1 ( l+v13' 13 U,  -S,V (70) 

It should be noted that for turbulent flows, the above 
equation would be transcendental, since UI z and U~ 3 
would be a function of the split-flow distribution par- 
ameter, 2, as well as the flow capacity ratio,/~. 

5. CONCLUSIONS 

Governing equations and their closed-form solu- 
tions for determining the heat transfer characteristics 
of three-channel single-pass split-flow heat exchangers 
have been successfully developed for both parallel- 
flow and counterflow configurations. A special-case 
model and the generalized model expressing the 
relationships between the heat exchanger effectiveness 
and the equivalent number of transfer units have been 
obtained. The special-case model is similar to that of 
the classical two-channel heat exchanger, but with 
some parameter modifications. Using the generalized 
model for a three-channel concentric-tube con- 
figuration, the special-case model has been shown to 
represent the optimum design of such heat exchangers 
for both parallel flows and counterflows. For  the same 
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concentr ic- tube configurat ions,  values of  the heat-  
exchanger effectiveness predicted by using the present  
theory are shown to agree within + 5% of  the exper- 
imental  measurements .  Therefore,  the theory has been 
successfully verified. 
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APPENDIX A: CLOSED-FORM LMTD 
TEMPERATURE RELATIONSHIPS FOR 

CONVENTIONAL TWO=CHANNEL HEAT 
EXCHANGERS 

The classical LMTD formulation can be used to obtain 
closed-form expressions of outlet temperatures of con- 
ventional two-channel heat exchangers. The heat balance 
between the hot fluid with temperature Th and the cold fluid 
with temperature T¢ can be expressed as 

0 = Ch(Thi- Tho) = C¢(Tco -- Ta). (A1) 

Here, Ch and Co are the flow capacity rates of the hot and 
the cold fluids, respectively. For the case of Ch ~ C~, the 
LMTD formulation of the total heat transfer rate for the 
counterttow configuration is 

0 = UA[ (Th°ZTcl)-(zhi-Tc°)  
[ In (Th°-- To') 

~,Thi- T~o,] 

(A2) 

where U is the overall heat transfer coefficients based on the 
heat exchange surface area A. For the parallel-flow con- 
figuration, the total heat transfer rate can be expressed as 

• [ (Tho - - / ' c o )  - -  (T . i  - To~) ] 0 =  v~ / - ~  

1 [ 
(A3) 

Under the condition of Ch :~ C¢, the fluid temperatures at 
the flow outlets of a counterflow exchanger can be expressed 
as follows by manipulating equations (A1) and (A2): 

f 1 expE A   )1l 

Too = ro,+(r~-r~)~ C - - ~ V - ~ - q S @  (AS) 
[ E-exp LVA~,<- ~)J j 

Similarly, outlet temperatures for parallel-flow heat 
exchangers can be expressed as 

c~ 
Tho = Thi (Thi- Tci) 

(ch + co 

G T Too = r ~ , + ~ ( r h , -  ~) 

A 1 1 

Although equations (A4)-(A7) have not appeared in the 
open literature, they can be easily verified by using the classi- 
cal relationships between the heat exchanger effectivess and 
the number of transfer units. 

Equations (A2), (A4) and (A5) were derived by using the 
assumption that Ch and Cc do not have the same value in the 
counterflow exchanger. For the special case of Ch = Cc in a 
counterftow exchanger, these equations become singular. 
The governing equation for this case can be expressed as 

dTh dT¢ UA 
- (Th  - -  Tc) .  ( A 8 )  

dz dz Ch 

From this expression, it can be shown that 

Th -- T¢ = D~ = constant. (A9) 

By combining equation (A9) and (A8), one can determine 
the temperature distributions as 

UA 
Th = -- ~ D I z + D 2  (A10) 

UA 
T~ = - c ~ D I z - D ]  +D 2. (Al l )  

The integration constants, D~ and Dz, can be determined as 
follows by letting Th = Th~ at z = 0 and T~ = Tc~ at z = 1 : 

Thi- T~ 
D, - I/1+ UA\I and D2 = Thi. (A12) 

Hence, the outlet temperatures can be determined by utilizing 
equations (A10), (A11) and (A12) to be 

T.i- To, 
T h ° = T ~ ( l + ~ C h )  (A13) 

Thi -- Tci 
Too= Thi ( I+C~-hUA)" (Am4) 

The total heat transfer rate therefore can be determined as 
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0 G(T~-/',3 (AI5) 

The derivation of these closed-form relationships for this 
special case is to show its similarity to a three-channel coun- 
terflow heat exchanger having its split-flow heat capacity 
ratio being equal to unity. 

APPENDIX B: HEAT TRANSFER ANALYSIS FOR 
A THREE-CHANNEL COUNTERFLOW 

EXCHANGER IIAVING ITS SPLIT-FLOW HEAT 
CAPACITY RATIO BEING EQUAL TO UNITY 

For a counterflow heat exchanger with its split-flow heat 
capacity rates, C~ and Cs, being equal, equations (5) and (6) 
can be expressed as 

.dT2 
z - ~ z  = - a3 (T, - T 2 )  ( B 1 )  

dT~ 
(1 --Z) ~ = - a s ( T ,  - T3). (B2) 

Combining these two equations with equation (4), one 
obtains 

d 
~ z [ T , - 2 T E - ( 1 - 2 ) 7 ' 3 1  = 0. (B3) 

Hence, the temperature difference becomes 

T ] - - 2 T 2 - - ( 1 - - 2 ) T  3 = O~ (B4) 

where D~ is an undetermined constant. Utilizing this equa- 
tion to eliminate T~ :From equations (B1) and (B2), one can 
obtain 

2 dT2 =: a a [ ( I - 2 ) ( T 2 - T 3 ) - D j ]  (B5) 
dz 

d T3 
(1--2) 2:l z- = a212(T3-T2)-D~].  (B6) 

Eliminating T3 from equations (B5) and (B6), one obtains 

d2T: dT2 a2a~ 
- - "  -- V D 1 (B7) 
dz ~ dz 2 ( 1 - 2 )  

where 

2a2 (1 -2 )a3  
v ~-! ~ + 2 (B8) 

The general solutior~ of this differential equation can be 
expressed as 

1"2 = :t) Z- e~Z -- a2a3Dl 
v v 2 ( ~ -  2) z + D3 (B9) 

where D2 and D3 are u ndetermined constants. Utilizing equa- 
tions (B4) and (B5), one can express the temperature dis- 
tributions in channels no. l and no. 3 as 

= ( 1 _  2__~1,2 C, aza3D, + _ _  TI ~ 2 + D 3  \v ad 

[ !  2 ]  C ~ a z a 3 D l  
T3 : (1 --2)a3 D2 v2(l --2) 

I a2 
+ v(1 _2)2 

a2D] 
v(1 --2) 

(B10) 

(1 1 2 ) 1 D 1 - ~ O 3  . ( B l l )  

The undetermined constants, DI, D 2 and D3, can be deter- 
mined by specifying temperatures at inlets to be inlet tem- 
peratures. Hence, the three boundary conditions can be 
expressed as 

(i) A t z = 0 :  T~ = T ,  (B12) 

(ii) A tz  = 1 : 1 " 2  = T2~ = T,, (B13) 

(iii) A tz  = 1 : 7"3 = T3i = Tsi. (B14) 

Utilizing these three conditions, one can determine the 
coefficients in equations (B9), (B10) and (B1 l) to be 

D t = 

v a3 -v 
T l i -  T2 i -{ - (1 -2 ) (T2 i -T3 i ) [ e  q- ~ ( 1 - - e  )1 

[ ~ ] [ - ~ ( ~  a3 a2a3 1 a2a3 1 
1- +v2 v 2 2 ~ - 2 ) ] + ~  +-e ~ 

(B15) 

(BI6) 

The total heat transfer rate can then be evaluated as 

0 = C] ( T ] i -  Tlo). (B21) 

The effectiveness of the heat exchanger can also be evaluated 
from equations (19) and (B21) to be 

T z i -  Tlo 
e = Tu -- Tsi " (B22) 

The number  of transfer unit for this case can be determined 
by using equations (14) and (20) as 

Tu - Tlo 
Ntu DI (B23) 

Under the special-case condition as shown in equation 
(22), it can be shown that 

a3 a2 
v = ~-  = (1--2)" (B24) 

The flow-distribution ratio under this condition can be deter- 
mined as 

a3 
2 = a2 +a3" (B25) 

Hence, the temperature distributions in all three channels 
reduce to 

Tl = -- vDI z + Dl + D3 (B26) 

D2 
1"2 = - - e  vz- vDlz + D3 (B27) 

V 

D~ = T , i -  v(1-2--'-~ +D2 -- . (B17) 

Each outlet temperatures of the three individual channels 
can then be evaluated by using equations (B9), (B10) and 
(B 11) to be 

_ azDl ( I - ~ ) + D 2 C ( ! - ~ ) + D 3  (B18) TIo v ( 1 - 2 )  

7"2o = ~ +D3 (B19) 

I- as q Dt I-1 2 ] 

(B20) 
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T3 = [ 1 -  1 "]D2 ~ ( 1 ~ ]  ~ -  e - - v D t z + D , .  (B2g) 

For the split-flow condition of T2~ = T3~ = T~, it can be 
shown by using equations (B13) and (B14) that D2 = 0. 
Therefore, T2 and T3 have the same value everywhere in 
the heat exchanger. The non-zero coefficients in the above 
equations become 

T u - -  Tsi 
D~ - (B29) 

l + v  

v T u  + Z~i 
D3 = 7"2o = T,o = (B30) 

l + v  

The outlet temperature of channel no.1 can then be deter- 
mined as 

vT~i + T~i 
T I 0  = (1-v)D~ + D  3 = - -  (B31) 

l + v  

APPENDIX C: DERIVATION OF THE ~-Ntu 
RELATIONSHIP FOR THREE-CHANNEL SPLIT- 

FLOW HEAT EXCHANGERS 

The effectiveness of a three-channel split-flow heat 
exchanger and its equivalent number of  transfer units are 
defined as those shown in equations (19) and (20), respec- 
tively. To derive their relationships for both the parallel-flow 
and the counterflow configurations, a differential length of  
the heat exchanger, dx, can be considered. The total rate of 
heat transfer through this differential area can be expressed 
a s  

gQ = U¢P~(T, - T~) dx  (El)  

= UI2P12(T1 -- T2) d x +  UI~Pt 3(Ti -- T3) dx. 

The heat is assumed to be transferred from the fluid in 
channel 1 to the split flows in channel 2 and channel 3 
with an equivalent temperature, an equivalent heat transfer 
coefficient, and an equivalent perimeter being T, U~, and Pc, 
respectively. However, the analysis can also be applied to the 
case with the direction of  the heat transfer reversed, because 
simultaneous sign changes for temperature differences and 
heat transfer rates do not affect the final form of the gov- 
erning equations. The equivalent split-flow temperature T~ 
can be related to temperatures of  the fluid flows in the two 
side channels as 

C2Tz+C3T3 
Ts (C2) 

C2 + C3 

Substituting equation (C2) into equation (C1) and inte- 
grating the resulting equation from x = 0 to x = L, one can 
obtain 

Cl (a30+a2~) 
GP~ (C3) 

LIfO + (1 - ~)~1 

where all parameters are identical to those defined 
previously. Equation (61) can then be obtained by sub- 
stituting equation (C3) into equation ( 2 0 ) .  

Assuming that there is no energy loss from the heat 
exchanger, one can express the overall heat-balance con- 
dition as 

Q. = C , ( T u - T , o )  = Cs(T~o-Tsi) (C4) 

where the inlet and the outlet temperatures of the central 
flow in channel no. 1 are denoted as T~i and T~o, respectively. 
Similarly, those of the equivalent split flow are also des- 

ignated as T~, and T~o, respectively. The effectiveness of the 
heat exchanger can also be expressed as the following by 
substituting equation (C4) into equation (19) : 

Z C l  
-= (C5) 

ZXCmin 

where A ~ T . -  T~i and z -~ T . -  T~o. Based on equations 
(CI), (C4), (C5) and (20), relationships between the effec- 
tiveness and the number of transfer units for both the par- 
allel-flow and the counterflow configurations can be derived 
as shown below. 

Parallel-flow exchangers 
The heat-balance condition can be expressed as 

~Q = - Cl dTi = C~ dTs. (C6) 

Combining equations (C1) and (C6), one can obtain 

d(T~--T~)(T,_T~) ( 1 1 )  ~ + ~  UeP~dx. (C7) 

Integrating equation (C7) from x = 0 to x = L and sub- 
stituting equation (20) into the resulting expression, one 
obtains 

a 1 

where a ~- T~o- Tso. Utilizing equation (C4), one can obtain 

a = A -  1+ r. (C9) 

Substituting equation (C9) into equation (C5), one obtains 

/ (c o) 

L 
Consequently, the effectiveness can be expressed as follows 
by substituting equation (C8) into (C10) : 

~ (Ct+C~) 1 - e x p  - N t u  . (Cl l )  

This expression is identical to the relationship shown in equa- 
tion (31). 

Counterflow exchangers 
The heat-balance condition for the counterflow con- 

figuration can be expressed as 

6() = - C ,  dT, = - C s d T  s. (C12) 

Combining equations (C1) and (C12), one obtains 

d (T , -T~)  ( 1  1 )  
(T~- -rs )  - ~ - ~  U~Pedx. (C13) 

Integrating equation (C13) from x = 0 to x = L and sub- 
stituting equation (20) into the result, one obtains 

09 exp -- Ntu C~in (C 1 4) 

where to = T~o- T~i and q --- T~,-/'so. Based on the definition 
of temperature differences, one obtains 
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oJ = A--z. (C15) 

In addition, the following relationship can also be obtained 
by using equation (C4) : 

~/= A-~(~--~J). (C16) 

Solving A as well as z from equations (C15) and (C16) and 
substituting them into equation (C5), one obtains 

I 1-~- ] c, cs ~ (c17) 
e=-U~m,. C s _ C  ~_ " 

q 

Equation (C17) can be shown to be identical to equation 
(37a) by substituting equation (C14) into this equation. 
Equation (37b) can then be derived by applying L'Hospital's 
rule to equation (37a). 


